If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2-50c+95=0
a = 5; b = -50; c = +95;
Δ = b2-4ac
Δ = -502-4·5·95
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10\sqrt{6}}{2*5}=\frac{50-10\sqrt{6}}{10} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10\sqrt{6}}{2*5}=\frac{50+10\sqrt{6}}{10} $
| 4z^2+4z+4=0 | | x*x=100*x/2 | | 10x+22=6x+74 | | 6x+30-2×-8=4×-16+20+6× | | 33x-55=5x-195 | | 5c^2-50+95=0 | | 5h-9=6 | | 3f^2+14f+15=0 | | 3r^2-3r+2=0 | | 3x18-8x=-2-10x-5 | | 0=-16t^2+138+55 | | 3r^2-8r-5=0 | | 0=240-20x | | 5t^2-49t-10=0 | | 5t^2~49t-10=0 | | 2-3x=12+7x | | 5/6+x=1/3 | | 20x-5x=15x | | 2x+7+1=10-x/5 | | (6x-4)^1/2=0 | | x*x-x=156 | | 4x+2/2=10+5 | | 14=2(b-6) | | F=(9÷5)(c)+32 | | 3y^2+32y-11=0 | | (4x-5)(4x+3)=902 | | -2t+8=-1 | | 10x=118 | | u/12.8=2 | | 2x+57=85 | | v/12+11=41 | | x/7=17.92 |